
  
Short Abstract — Typical models of cellular regulation strive 

for a detailed, microscopic description, faithfully reproducing 
the nuances of a myriad of molecular interactions. However, 
when experimental data is limited, this can lead to overfitting 
and a degraded quality of the model’s predictions.  We argue 
that, when a system’s microscopic interactions are not well-
resolved by the available data, a better option might be to 
create a phenomenological model that is complex enough to fit 
the data, yet simple enough to avoid overfitting.  We implement 
this idea by defining a hierarchy of increasingly complex 
molecular interaction models and by using Bayesian model 
selection to choose the best among them.  We test the method 
on synthetic data and find that phenomenological models 
inferred this way often outperform detailed, correct molecular 
models in making predictions about responses of the system to 
signals yet unseen. 
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I. MOTIVATION 
 central goal of any modeling effort is to make 
predictions regarding experimental conditions that have 

not yet been observed.  Overly simple models will not be 
able to fit the original data well, but overly complex models 
are likely to overfit the data and thus produce bad 
predictions.  An example of a model with many states and 
many parameters — measuring the net phosphorylation of a 
protein species with n phosphorylation sites — demonstrates 
the danger of inferring the parameters of a complex model 
from a small amount of data: Even if we know the exact 
form of the underlying microscopic kinetics that created a 
set of (synthetic) data, the best fit model parameters produce 
predictions that are often absurd. 

II. METHODS 

A. Calculating the Bayesian posterior probability 
When faced with limited data to constrain a complex, 

nonlinear system with uncertain topology and/or parameters, 
the best model is likely to be a phenomenological one in 
which we gradually add complexity until a balance is struck 
to best fit the data without overfitting.  This balance can be 
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quantified by the Bayesian posterior probability that a given 
model produced the data.  In certain limits, this posterior 
probability is the sum of the maximum likelihood error (how 
well the model fits the data) and a term measuring the 
volume of parameter space that adequately fits the data 
(which penalizes for overly complex models); this posterior 
probability is directly related to the expected prediction error 
[1], and it forms the core of the model selection approach 
known as Bayesian Information Criterion (BIC).  The 
criterion needs modification for biochemical systems since 
the estimation of the penalty term is complicated by 
“sloppiness” [2], the inability of the data to constrain certain 
directions in parameter space. 

B. Model hierarchy 
The process of Bayesian model selection requires a series 

of models of increasing complexity that 1) are nested (each 
model includes all parts of the previous model), 2) form a 
one-dimensional hierarchy, and 3) are guaranteed, as the 
model complexity grows, to approximate any data set 
arbitrarily well.  Under these conditions, on average, a single 
model in the hierarchy is guaranteed to achieve the best 
posterior probability. We have constructed a hierarchy of 
interactions among species that satisfies these conditions.  

What type of models should we use in this series?  The 
simplest might be a polynomial fit of increasing degree, but 
this does not incorporate the fact that molecular systems are 
governed by continuous ODE dynamics, with interactions 
among nodes taking typical sigmoidal shapes. These 
constraints are better captured by the s-system power-law 
network [3] or sigmoidal network [4] formalisms, where we 
increase the complexity by adding dynamical variables.  

III. RESULTS 
We test the selection process by fitting simulated output 

from various typical biochemical models, including the 
above phosphorylation model and a 3-gene transcription 
network.  This allows us to explicitly verify that models with 
higher posterior probability do in fact make better 
predictions. Models that incorporate more details of the 
underlying dynamics, but are not unnecessarily complex, 
typically perform better in making predictions. 
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